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Figure 1. Enabling consistent extreme monocular dynamic view synthesis: We introduce AnyView, a diffusion framework that can
generate videos of dynamic scenes from any chosen perspective, conditioned on a single input video. Our model operates end-to-end,
without explicit scene reconstruction or expensive test-time optimization techniques. Existing methods tend to fail to extrapolate, largely
copying the input view. More recent baselines can recover the overall structure in some cases (1st, 2nd rows), but fail when the camera
trajectories become more complex (3rd row). Meanwhile, our method preserves scene geometry, appearance, and dynamics, despite
working with drastically different target poses and highly “incomplete” visual observations. (D) indicates a baseline that relies on reprojected
point clouds from estimated depth maps.

Abstract

Modern generative video models excel at producing con-
vincing, high-quality outputs, but struggle to maintain
multi-view and spatiotemporal consistency in highly dy-
namic real-world environments. In this work, we intro-
duce AnyView, a diffusion-based video generation frame-
work for dynamic view synthesis with minimal inductive
biases or geometric assumptions. We leverage multiple
data sources with various levels of supervision, includ-
ing monocular (2D), multi-view static (3D) and multi-view
dynamic (4D) datasets, to train a generalist spatiotempo-

ral implicit representation capable of producing zero-shot
novel videos from arbitrary camera locations and trajecto-
ries. We evaluate AnyView on standard benchmarks, show-
ing competitive results with the current state of the art, and
propose AnyViewBench, a challenging new benchmark tai-
lored towards extreme dynamic view synthesis in diverse
real-world scenarios. In this more dramatic setting, we find
that most baselines drastically degrade in performance, as
they require significant overlap between viewpoints, while
AnyView maintains the ability to produce realistic, plausi-
ble, and spatiotemporally consistent videos when prompted
from any viewpoint.
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1. Introduction
Generating a new video from an arbitrary camera perspec-
tive while the scene is in motion is a highly ambitious and
fundamentally under-constrained task. A single input view
only depicts a fraction of the world; the rest is occluded,
transient, or simply unknown. New moving objects may
enter the scene at any moment, and unobserved regions
might be dynamic themselves, further introducing uncer-
tainty into the generative process. Exact 4D reconstruc-
tion from such signals is therefore impractical in the gen-
eral case. For many downstream uses of 4D video repre-
sentations [20, 32, 55], — such as robotics, world models,
simulation, telepresence, VR/AR, autonomous driving —
what matters is not an exact correspondence with ground
truth, but rather whether the resulting representation is re-
alistic, temporally stable, and self-consistent across large
viewpoint changes. A common problem with learned visuo-
motor policies, for example, is that they often suffer from
brittleness under shifting camera poses [10, 39, 49, 62].

Humans routinely engage this problem in a way that
is both rooted in intuition and very useful in practice: as
we observe the physical world, we mentally “re-project”
scenes, inferring likely layouts, object shapes, scene com-
pletions, and plausible dynamics from limited informa-
tion [5, 8, 12, 28, 30, 35, 40, 46]. This is not simply a low-
level reconstruction capability: it is a powerful prior over
shapes, semantics, materials, and motion that yields predic-
tions that are largely viewpoint-invariant. The goal of this
paper is to take a step towards solving that objective: we tar-
get perceptually realistic 4D video synthesis under extreme
camera trajectories and displacements. To that end, we en-
dow video generative models with the same inductive bias:
to produce reasonable scene completions, based on a single
input video, that respect scene geometry, physics, and ob-
ject permanence, even when there is little overlap with the
conditioning view.

Most existing dynamic view synthesis (DVS) approaches
and benchmarks are not built for this regime [13, 14, 25,
53, 57], as they typically operate in narrow settings: the
input and target cameras are spatially nearby, looking in
similar directions, and thus methods are designed to max-
imize pixel metrics under limited motion, ignoring the rest
of the scene. In particular, most current state of the art DVS
methods [9, 66, 68] rely on explicit 3D reconstructions (i.e.,
depth reprojection + image inpainting), costly test-time op-
timization and finetuning techniques, and support a limited
set of camera trajectories.

To move away from this simplified setting, we first
present AnyView, a novel diffusion-based DVS architecture
for high-fidelity video-to-video synthesis under dramatic
camera trajectory changes, capable of producing perceptu-
ally plausible and semantically consistent videos from arbi-
trary novel viewpoints. Our framework is purposefully light

on explicit inductive biases: camera parameters are pro-
vided via dense ray-space conditioning, allowing us to sup-
port any model (including non-pinhole), and the network
learns to synthesize unobserved content implicitly, guided
by large-scale, diverse training data. To reach this level of
implicit 4D understanding, we leverage existing video foun-
dation models as a source of rich internet-scale 2D appear-
ance and motion priors, and augment them by incorporating
multi-view geometry and camera controllability, learned us-
ing 12 multi-domain 3D and 4D datasets.

Secondly, due to the aforementioned shortcomings of ex-
isting evaluation procedures, we assemble AnyViewBench,
a novel benchmark that formalizes and standardizes the ex-
treme DVS task across various domains (driving, robotics,
and human activity), camera rigs (ego-centric and exo-
centric), and camera motion patterns (fixed, linear, or com-
plex, sometimes with changing intrinsics). Each scene pro-
vides at least two time-synchronized views, enabling rig-
orous metric evaluations with ground truth videos without
resorting to proxy setups.

2. Related Work

2.1. Video Generative Models
In recent years, significant advances have been made in
video generation, leading to the development of increas-
ingly capable generative models. Stability AI’s SVD [7]
pioneered video diffusion by adding temporal layers to a
pre-trained image diffusion network [44], allowing coher-
ent short video clip generation from single images or text
prompts. CogVideoX [64] introduced a 3D Variational
Autoencoder (VAE) to compress videos across spatial and
temporal dimensions, enhancing both compression rate and
video fidelity. NVIDIA’s Cosmos [2] introduced a suite
of models with strong long-range temporal consistency and
flexible conditioning signals (text, image and video input).
Wan [52] is a novel mixture of experts-based video genera-
tion architecture, and provides a suite of video world mod-
els that excel at prompt following and photorealistic gener-
ation. However, none of these architectures were originally
designed with camera conditioning in mind, focusing in-
stead on future frame forecasting in the single – or more
recently multi-camera [37] – setting.

2.2. Dynamic View Synthesis
Dynamic view synthesis is the task of generating novel
renderings from arbitrary viewpoints and timesteps given
a monocular video of a dynamic scene. A number of
works have combined video generation with explicit geo-
metric conditioning to improve geometric 3D consistency
and control [21, 51, 58, 70]. Shape of Motion [53] addresses
monocular dynamic reconstruction by representing scene
motion through a compact set of SE(3) motion bases, en-

2



E
n

co
d

e
 &

 S
ta

ck

O
u

tp
u

t 
V

ie
w

In
p
u

t 
V

ie
w

RGB Frames

U
n

sta
ck

 &
 D

e
co

d
e

RGB

Plücker

Plücker Embeddings
Encode input 

camera trajectory

Encode target

camera trajectory 2 ? t ? h ? w  

tokens

Diffusion

Transformer

3D 

Rope

Predict ions

GT

Timestep t

n iterat ions

Figure 2. The AnyView architecture. For both the clean input and noisy target videos, we concatenate pixels (RGB values) and camera
information (Plücker vectors) belonging to the same viewpoint along the channel dimension, after independently encoding each modality
into latent embeddings. We then stack these two multimodal videos along the sequence dimension, for a total of 2 · t · h · w tokens, which
are fed into the diffusion transformer to iteratively denoise the target video.

abling soft segmentation into multiple rigidly moving parts
using monocular depth and long-range 2D tracks. It fuses
monocular depth and long-range 2D tracks to obtain a glob-
ally consistent dynamic 3D representation.

While explicit modeling approaches can achieve rela-
tively high accuracy, they are computationally expensive
and brittle. GCD [50] proposed to address dynamic view
synthesis as an implicit problem, by re-purposing internet-
scale video diffusion models via camera conditioning. This
implicit formulation provides the greatest flexibility and ro-
bustness, but requires ground truth multi-view video data
for training. ReCamMaster [4] advanced this research di-
rection by utilizing a more powerful video generation model
and a more realistic simulator to generate training data,
whereas Trajectory Attention [60] augments video diffu-
sion models with a trajectory-aware attention mechanism,
improving fine-grained camera motion control and tem-
poral consistency. AC3D [3] analyzes how video diffu-
sion models internally represent 3D camera motion, adding
ControlNet-style conditioning to improve controllability.

Other methods [9, 43, 68] have taken a hybrid approach
by first lifting the input video in 3D via monocular depth
estimation, reprojecting the resulting point cloud to the
target camera pose, and then treating dynamic view syn-
thesis as an in-painting problem. Among these methods,
CogNVS [9] further introduces test-time optimization to
improve rendering accuracy at the cost of inference speed,
while StreetCrafter [61] focuses on autonomous driving
scene generation, utilizing LiDAR renderings as the con-
trol signal. Very recently, InverseDVS [65] has proposed
a training-free approach that reformulates in-painting as
structured latent manipulation in the noise initialization
phase of a video diffusion model.

While the shift towards explicit scene reconstruction and
test-time optimization has led to high-quality dynamic view
synthesis in the narrow setting, where camera motion is lim-
ited to neighbouring and highly overlapping regions, we ex-
perimentally demonstrate that these methods do not gener-
alize to the more challenging extreme setting. In contrast,
data-driven, implicit approaches are in principle capable of
dynamic view synthesis from any view point, but are in

practice limited by the availability of diverse training data.
In this work, we address this limitation by (1) combining a
wide body of publicly available datasets to train AnyView
— the first model capable of synthesizing arbitrary novel
views in dynamic, real-world scenes; and (2) proposing a
new benchmark, AnyViewBench, to properly evaluate dy-
namic view synthesis performance in this new setting.

3. Methodology
3.1. Problem Statement
The goal of dynamic view synthesis (DVS) is to create an
output video V y of an underlying scene as depicted from
a chosen virtual viewpoint cy , given an input video V x

recorded by a camera with known poses cx and intrinsics
ix over time. Specifically, we define the input (observed)
RGB video as V x ∈ RT×H×W×3, the target (unobserved)
RGB video as V y ∈ RT×H×W×3, the input camera tra-
jectory as cx ∈ RT×4×4 with intrinsics ix ∈ RT×3×3, and
the target camera trajectory as cy ∈ RT×4×4 with intrinsics
iy ∈ RT×3×3. Using a generative model f , we estimate V y

corresponding to the desired novel viewpoint cy by drawing
from a conditional probability distribution:

V y ∼ Pf (V y | V x, cx, ix, cy, iy) (1)

The camera parameters cx, ix, cy, iy represent two se-
quences of fully specified 6-DoF SE(3) camera poses, en-
suring that the task setting is both general and unambiguous.
Moreover, there should be some spatial overlap in content
between the two perspectives cx and cy (even if this over-
lap is temporally asynchronous), otherwise the conditioning
signal loses its relevance.

3.2. Architecture
The task described above involves (1) synthesis of high-
dimensional data in the form of multiple images, and (2)
considerable uncertainty handling mainly due to occlu-
sion and ambiguous object motion. These requirements are
challenging, but naturally lend themselves to being imple-
mented using the generative video paradigm. Hence, we
adopted Cosmos [37], a latent diffusion transformer, as our
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Figure 3. Overview of our training data mixture. We train and evaluate AnyView on both single-view and multi-view videos from four
domains: 3D, Driving, Robotics, and Other (see Section 3.3). During training, we perform weighted sampling to ensure each domain is
seen equally often, i.e. comprises 25% of the batch.

underlying base representation, due to its efficiency, high-
quality pretrained checkpoints, and flexible conditioning
mechanisms (e.g. text, image, and video).

Our proposed AnyView architecture, illustrated in Fig-
ure 2, prioritizes simplicity and scalability. Contrary to
most state-of-the-art methods [9, 43, 60, 68], we elect to
not use warped depth maps as explicit conditioning due to
the risk of compounding errors due to depth estimation, and
instead rely solely on a learned implicit representation as
our rendering mechanism. The reasoning behind this de-
cision is so that we can achieve unbounded dynamic view
synthesis, that does not require substantial overlap between
target and generated videos, thus allowing for more extreme
camera motion. We explore this property in our proposed
AnyViewBench, outperforming baselines that rely on ex-
plicit reprojection mechanisms.

In order to make AnyView 4D-aware and controllable,
we feed information about both viewpoints into the network
in a structured yet straightforward way. To account for the
possible lack of an absolute frame of reference, all camera
poses are expected to exist relative to the target viewpoint
cy,0 at time t = 0. In other words, cy always starts at the
“origin”, with cy,0 = I4×4 mapping to the identity matrix.
If this is not the case, a simple change of coordinate system
can be done by applying c̃ = c · c−1

y,0, assuming the camera-
to-world extrinsics convention.

First, the given video V x is compressed into a latent
space by a video tokenizer to become vx ∈ Rt×h×w×d,
with spatiotemporal downsampling ratios T/t = 4 and
H/h = W/w = 8, and embedding size d = 16. We
then encode all camera parameters cx, ix, cy, iy into a uni-
fied Plücker representation P = (r,m) [22], which com-
bines extrinsics and intrinsics into a dense map containing
per-pixel ray vectors r and moment vectors m = r × o.
This results in two quantities P x,P y ∈ RT×H×W×6,
which are tensors with the same dimensionality as a 6-

channel video, or two 3-channel videos. We can there-
fore separately tokenize the rays r ∈ RT×H×W×3 and
moments m ∈ RT×H×W×3 the same way as before into
px,py ∈ Rt×h×w×2d. An interesting property of using
Plücker maps instead of direct camera conditioning [50] is
the natural handling of non-pinhole camera models, since
the dense 3D ray vectors directly capture camera intrinsics
in a general, non-parametric way.

Because latent RGB and Plücker tokens from each view-
point contain information pertaining to the same spatiotem-
poral region, we merge them via concatenation along the
channel dimension, while keeping tokens from separate
viewpoints separate. Since there are two viewpoints in
total, this results in a sequence of 2 · t · h · w tokens,
each of length 3 · d. All tokens are tagged with rotary
positional embeddings [47], as well as a unique per-view
embedding. After completing all self-attention and cross-
attention blocks, the output sequence is the latent RGB
video vy ∈ Rt×h×w×d. During training, these latent to-
kens are supervised with an L2 loss, and during inference
they are iteratively denoised, before being decoded into a
generated video V y ∈ RT×H×W×3.

3.3. Datasets

Because AnyView does not rely on any explicit condition-
ing mechanism (e.g. intermediate depth maps) to facilitate
the rendering of novel viewpoints, it must learn implicit
multi-view geometry as well as a wide range of appear-
ance priors, to be able to inpaint and outpaint potentially
large unobserved portions of the scene. In order to train
such a generalist spatiotemporal representation capable of
handling multiple domains, we combined 12 different 4D
datasets into our unified training pipeline. Among them
is Kubric-5D, our newly introduced variation of Kubric-
4D [16, 50] that vastly increases the diversity of camera
trajectories. We classify our training datasets into four dis-
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Benchmark S/R Domain Type # Cameras # Episodes Resolution Input Cam. Align Start Gen. Type

Narrow dynamic view synthesis

DyCheck iPhone [14] Real Hand-Object 4D 2 – 3 5 / 7 Variable @ 288 × 384 Moving No 0-shot overall
Kubric-4D (gradual) [16] Sim Multi-Object 4D 16 (exo only) 20 / 100 13 frames @ 384 × 256 Fixed Yes In-dist.
ParDom-4D (gradual) [1] Sim Driving 4D 19 (16 exo + 3 ego) 20 / 61 13 frames @ 384 × 256 Variable Yes In-dist.

AnyViewBench: In-distribution extreme dynamic view synthesis

DROID (ID) [29] Real Robotics 4D 2 (exo only) 64 / 3,301 29 frames @ 384 × 208 Fixed No In-dist.
Ego-Exo4D (ID) [15] Real Human Activity 4D 4 – 5 (exo only) 64 / 276 41 frames @ 384 × 208 Fixed No In-dist.
LBM Sim + Real Robotics 4D 2 (exo only) 64 / 5,988 41 frames @ 336 × 256 Fixed No In-dist.
Kubric-4D (direct) [16] Sim Multi-Object 4D 16 (exo only) 20 / 100 13 frames @ 384 × 256 Fixed No In-dist.
Kubric-5D [16] Sim Multi-Object 4D 16 (exo only) 64 / 200 41 frames @ 384 × 256 Variable No In-dist.
Lyft [23] Real Driving 4D 6 (ego only) 64 / 436 41 frames @ 384 × 320 Variable No In-dist.
ParDom-4D (direct) [1] Sim Driving 4D 19 (16 exo + 3 ego) 20 / 61 13 frames @ 384 × 256 Variable No In-dist.
Waymo [48] Real Driving 4D 5 (ego only) 64 / 202 41 frames @ 384 × {176, 256} Variable No In-dist.

AnyViewBench: Zero-shot extreme dynamic view synthesis

Argoverse [56] Real Driving 4D 7 (ego only) 64 / 1,042 41 frames @ {288, 384} × {288, 384} Variable No 0-shot dataset
AssemblyHands [38] Real Hand-Object 4D 8 (exo only) 20 / 20 41 frames @ 384 × 208 Fixed No 0-shot domain
DDAD [17] Real Driving 4D 6 (ego only) 64 / 200 41 frames @ 384 × 240 Variable No 0-shot dataset
DROID (OOD) [29] Real Robotics 4D 2 (exo only) 64 / 252 29 frames @ 384 × 208 Fixed No 0-shot station
Ego-Exo4D (OOD) [15] Real Human Activity 4D 4 – 5 (exo only) 64 / 408 41 frames @ 384 × 208 Fixed No 0-shot activity/site

Table 1. Testing datasets. We evaluate on several benchmarks that cover both narrow and extreme settings. We define AnyViewBench
as a multi-faceted benchmark focusing on the latter category, setting a new standard for consistent dynamic view synthesis in challenging
settings. Test splits are capped at 64 per dataset by means of uniform subsampling. Exo(centric) refers to inward-facing viewpoints from
cameras outside the scene, whereas ego(centric) refers to outward-facing viewpoints close to the subject of interest (e.g. a vehicle). Input
Cam. refers to what the camera characteristic of the observed video (i.e. static vs dynamic). Align Start specifies whether the output
trajectory starts at the same initial frame as the input. The rightmost column (Generalization Type) qualitatively denotes how large the
distribution shift is relative to the AnyView training mixture.

tinct quadrants: Robotics, Driving, 3D, and Other. A vi-
sual overview is illustrated in Figure 3, and more details are
provided in the supplementary material. To the best of our
knowledge, this data mixture covers a significant portion of
publicly available multi-view video datasets. We leave the
inclusion of additional 4D datasets [41, 42, 71] to future
work.

3.4. Implementation Details

We train AnyView for 40,000 iterations on 64 NVIDIA
H200 GPUs at a global batch size of 512. We ap-
ply curriculum learning with increasing resolution: first
we train at a largest image dimension of 384 for
30,000 steps, before finetuning at a largest image di-
mension of 576. The initial learning rate is 5 · 10−5,
and drops smoothly to 1 · 10−5 according to a co-
sine schedule. All experiments are performed with the
Cosmos-Predict2-2B-Video2World [36] model,
starting from their pretrained network, which has around 2
billion parameters. We disable language conditioning, since
it is not relevant to our task setting. Furthermore, in order
to properly combine datasets with varying physical scales,
we divide the translation vectors of all cameras {cx, cy} by
a carefully chosen per-dataset normalization constant to en-
sure the resulting Plücker values always fall in the range
[−1, 1], clipping pixels as needed.

4. Experiments

4.1. Evaluation Challenges
As the field is evolving, many existing DVS benchmarks are
beginning to lack difficulty, containing scenes with mini-
mal object motion and modest camera transformations [14,
33, 50, 67]. Qualitative results are often demonstrated on
camera trajectories with variations of only about 10−30 de-
grees relative to the center of the scene [4, 50, 53, 66, 69].
Consequently, the heavy lifting of inpainting large occlu-
sions is mostly avoided, making it unclear to which extent
these models learn robust, multi-view consistent 4D repre-
sentations. These efforts are further complicated by a lack
of standardization, which can be partially attributed to the
inherent complexity of DVS: describing the task is insuf-
ficient to define a path towards practical execution. These
design choices include but are not limited to: video resolu-
tion, number of frames, camera controllability, the space of
possible camera transformations, and so on.

4.2. Benchmarks
We first consider three popular DVS benchmarks that can
be classified as falling into the “narrow” regime. Then, to
address the aforementioned concerns, we propose AnyView-
Bench, which substantially pushes models into the more
challenging “extreme” regime.
DyCheck iPhone (narrow DVS). The iPhone dataset [14]
is a small collection of high-quality, real-world, multi-view
videos of easy-to-moderate difficulty established to mea-
sure DVS fidelity. Following previous works [9], that have
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Figure 4. AnyView in-domain DVS results on Kubric-4D (left) and Pardom-4D (right). We show the first and last frame of each video.
The scene layout is generally preserved very well, despite drastic viewpoint changes and/or heavy occlusion from the input vantage point.

Method PSNR↑ SSIM↑ LPIPS↓ TTO Aux. 0-shot Time

DyCheck iPhone [14]

ShapeOfMotion† [53] 16.72 0.630 0.450 ✓ D P T – ~1h
CogNVS† [9] 16.94 0.449 0.598 ✓ D(GT) – ~1h

GEN3C* [43] 10.13 0.175 0.695 D ✓ ~15m
TrajAttn* [60] 10.30 0.181 0.682 D ✓ ~10m

TrajCrafter† [68] 14.24 0.417 0.519 D ✓ ~10s

GCD* [50] 11.43 0.247 0.728 – ✓ ~10s
AnyView 13.47 0.295 0.550 – ✓ ~10s

Kubric-4D (gradual) [16]

CogNVS† [9] 22.63 0.760 0.232 ✓ D(GT) – ~1h
ReCapture† [69] 20.92 0.596 0.402 ✓ D – ~15m

GEN3C† [43] 19.41 0.630 0.290 D ✓ ~15m
TrajAttn* [60] 15.73 0.404 0.530 D ✓ ~5m

TrajCrafter‡ [9] 20.93 0.730 0.257 D ✓ ~10s

GCD* [50] 20.42 0.581 0.405 – ~10s
AnyView 21.21 0.644 0.358 – ~10s

ParDom-4D (gradual) [1]

CogNVS† [9] 24.34 0.797 0.302 ✓ D(GT) – ~1h

GEN3C* [43] 18.40 0.528 0.542 D ✓ ~15m
TrajAttn* [60] 20.03 0.566 0.518 D ✓ ~5m

TrajCrafter‡ [9] 21.46 0.719 0.342 D ✓ ~10s

GCD* [50] 24.75 0.724 0.355 – ~10s
AnyView 26.29 0.758 0.320 – ~10s

Table 2. Narrow DVS results. We compare against several state-
of-the-art baselines, including those using test-time optimization
(TTO) and auxiliary networks (Aux.) for depth (D), poses (P),
and/or 2D point tracks (T). The inference runtime assumes that a video was
not observed before, and thus includes a test-time optimization stage if present.
Results reported by: †original paper; ‡another paper (cited); *computed by us.

pointed out that the provided camera poses are not very ac-
curate, we compute corrected extrinsics using MoSca [31].
Kubric-4D and ParDom-4D (narrow + extreme DVS).
The GCD [50] paper introduced two synthetic datasets for
DVS training and evaluation, based on the Kubric [16] and
ParallelDomain [1] simulation environments.

Input Predict ion Ground Truth

T
im

e

Input Predict ion Ground Truth

Figure 5. Results on DyCheck iPhone (0-shot narrow DVS).
While these scenes are not highly dynamic, they do contain subtle,
intricate motions and hand-object interactions.

AnyViewBench (extreme DVS). We introduce AnyView-
Bench, a multi-faceted benchmark that covers datasets
across multiple domains (driving, robotics, and human ac-
tivities), as shown in Table 1. The camera motion patterns
range from simple (fixed or linear) to complex (e.g. highly
non-linear trajectories, changing intrinsics, etc.). To pro-
mote rigorous evaluation, we provide synchronized videos
from at least two separate viewpoints for each episode, with
well-defined details such as spatial resolution and number
of frames, such that ground truth metrics can be calculated
in a straightforward manner. For all in-distribution datasets,
we separate roughly 10% to serve as validation, and for both
in-distribution and zero-shot datasets we curate smaller sub-
sets to serve as official test splits. Moreover, two DROID
stations (GuptaLab, ILIAD), as well as certain EgoExo4D
institutions (FAIR, NUS) and activities (CPR, Guitar), are
held out to serve as zero-shot evaluation. More information
about AnyViewBench can be found in the supplementary
material, and we will release it upon publication.

4.3. Baselines
Most current DVS methods face key limitations: the input
video must be captured from a strictly static camera [50],
or from a strictly dynamic camera [9, 43], or both input and
output videos must start from the same position [4, 60, 68],
or the camera controlling mechanism has limited degrees
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Dataset GCD [50] TrajAttn [60] GEN3C [43] TrajCrafter [68] CogNVS [9] Ours (AnyView)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

In-distribution

DROID (ID) [29] 10.18 0.255 0.688 9.93 0.247 0.671 9.62 0.211 0.666 10.45 0.257 0.620 9.44 0.281 0.634 14.47 0.445 0.472
EgoExo4D (ID) [15] 12.10 0.255 0.670 11.64 0.234 0.646 11.69 0.222 0.643 11.33 0.195 0.642 10.80 0.241 0.670 18.14 0.531 0.379
LBM 12.59 0.398 0.694 13.47 0.421 0.614 13.48 0.449 0.581 13.68 0.447 0.537 13.30 0.453 0.548 17.94 0.649 0.348
Kubric-4D (direct) [16] 17.57 0.477 0.512 13.47 0.320 0.607 13.59 0.341 0.599 14.14 0.294 0.592 12.55 0.329 0.601 18.38 0.441 0.362
Kubric-5D 13.83 0.391 0.644 13.25 0.360 0.628 13.10 0.327 0.627 13.30 0.287 0.625 12.18 0.318 0.643 17.18 0.468 0.428
Lyft [23] 8.72 0.335 0.697 8.33 0.273 0.621 8.43 0.286 0.634 8.73 0.251 0.621 8.34 0.319 0.628 15.37 0.564 0.371
ParDom-4D (direct) [1] 22.67 0.656 0.457 16.91 0.445 0.610 16.64 0.478 0.590 18.23 0.475 0.586 18.36 0.499 0.564 24.26 0.688 0.351
Waymo [48] 12.93 0.393 0.647 12.55 0.350 0.613 12.98 0.350 0.600 12.66 0.312 0.593 13.27 0.377 0.594 16.52 0.477 0.480

Average 13.95 0.400 0.623 12.44 0.331 0.626 12.44 0.333 0.617 12.82 0.315 0.602 12.28 0.352 0.610 17.78 0.533 0.399

Zero-shot

Argoverse [56] 11.45 0.403 0.682 10.62 0.317 0.665 10.52 0.319 0.680 10.67 0.325 0.621 10.76 0.360 0.610 12.38 0.399 0.587
AssemblyHands [38] 9.77 0.262 0.759 9.97 0.266 0.736 9.86 0.237 0.732 11.45 0.248 0.701 9.93 0.281 0.701 11.21 0.291 0.688
DDAD [17] 9.81 0.278 0.660 9.16 0.244 0.620 9.35 0.259 0.600 10.73 0.300 0.558 10.81 0.355 0.572 11.44 0.341 0.519
DROID (OOD) [29] 11.81 0.315 0.690 10.83 0.320 0.678 10.56 0.276 0.674 11.37 0.339 0.614 10.48 0.358 0.632 12.34 0.422 0.601
EgoExo4D (OOD) [15] 11.98 0.239 0.668 11.31 0.203 0.653 11.40 0.193 0.651 11.27 0.180 0.647 10.52 0.227 0.683 13.30 0.297 0.562

Average 10.96 0.299 0.692 10.38 0.270 0.670 10.34 0.257 0.667 11.10 0.279 0.628 10.50 0.316 0.640 12.03 0.350 0.591

Table 3. Extreme DVS results (AnyViewBench). Note that in-distribution datasets are part of AnyView’s training mixture, but might be
zero-shot for some of the baselines, hence we provide these results for completeness. For qualitative comparison, please refer to Figure 1.
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Figure 6. AnyView extreme DVS results on driving (left) and robotics (right) benchmarks. We show both in-domain and zero-shot
results. For driving videos, we focus on the three frontal cameras, whereas for robotics, we focus on all scene cameras.

Input Predict ion Ground Truth

In-Distribut ion Zero-Shot

Input Predict ion Ground Truth

Figure 7. AnyView extreme DVS results on Ego-Exo4D. We
show both in-domain and zero-shot results. Note that in the zero-
shot case, the background often has to be “guessed” from the other
camera viewpoint, but the inpainted regions (see e.g. basketball,
soccer) integrate harmoniously with the rest of the scene.

of freedom [4, 50, 68]. As a result, methods that excel
in certain conditions might be incompatible with slightly

different evaluation settings, hindering standardized evalu-
ation across multiple benchmarks. More information de-
tailing all prior works we considered as baselines can be
found in the supplementary material. Most of these mod-
els already evaluate on at least a subset of the “narrow”
benchmarks, but we additionally evaluate them (doing our
best effort to project down to and accommodate the space of
supported camera transformations as needed) on AnyView-
Bench, which embodies the “extreme” benchmarks. Re-
CamMaster [4] was not evaluated because it does not sup-
port arbitrary camera trajectories, and InverseDVS [66] was
not evaluated because there was no working released code
at the time of submission. When evaluating baseline meth-
ods that require depth estimation to render reprojected im-
ages, we use DepthAnythingV2 [63] and tune the maximum
depth parameter for each dataset to achieve the best align-
ment between reprojected and ground truth images.
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(a) Headlight reflections. While the white van is partially visible in the
first few frames, and thus gets depicted accurately in the remainder of the
video, the white car is never observed in any input frame. Instead, AnyView
appears to pick up on the headlights reflecting on the road. Although the
reconstructed car does not have the correct appearance, the model indirectly
estimates its trajectory by tracking the reflection over time.

Input Predict ion Ground Truth
T

im
e

(unobserved)

(b) Driving behavior. This zero-shot ArgoVerse scene depicts the ego
vehicle pausing for a moment, and then turning left. The model correctly
hallucinates the black car passing by on the left of the generated video,
despite never observing it, presumably based on the suspicion that the
driver must be waiting at the green light because of oncoming traffic be-
fore executing the unprotected left turn.

Figure 8. Examples of advanced reasoning within AnyView, as a way to indirectly guide generation in unobserved parts of the scene.

4.4. Results

Following standard convention, we report DVS results in
terms of PSNR (dB), SSIM, and LPIPS (VGG), averaged
over all frames in the generated video. Note that these met-
rics can only attest to how similar generated predictions are
to the ground truth, but not necessarily how realistic and
plausible they are when the true underlying scene cannot be
fully known due to lack of overlap between viewpoints.

Quantitative results on existing narrow DVS benchmarks
are reported in Table 2, with qualitative results in Figures 4
and 5. For completeness, we also include metrics as re-
ported by other papers, as well as evaluate the baselines
ourselves when possible. AnyView outperforms GCD [50],
the only baseline that does not require explicit depth esti-
mation or reprojection, by a large margin, and compares
favorably with explicit depth reprojection methods — and
those that require expensive test-time-optimization — in
most metrics. This narrow setting (i.e., large overlapping
regions with small viewpoint changes) is particularly well-
suited for such methods, since a lot of information can be di-
rectly transferred across viewpoints, and the model is tasked
solely with inpainting the missing regions.

Next, we report results in extreme DVS setting using
AnyViewBench, with quantitative results in Table 3 and il-
lustrations in Figures 6 and 7. These scenarios are much
more challenging, since they require implicit 4D under-
standing to ensure spatiotemporal consistency. For exam-
ple, in real-world driving, the amount of spatial overlap be-
tween neighboring cameras is generally small, meaning that
when the model is prompted with generating the front-left
view based solely on the front view (or vice-versa), it has
to plausibly infer the majority of the scene based on little
information. However, if the ego vehicle is moving, infor-
mation is able to eventually “leak” into other views and can

be propagated across the entire sequence, further limiting
the space of “correct” generations.

In the upper left scenario in Figure 6, the red car arriv-
ing at the intersection is predicted on the left view before
it is visible in the input front view, showing that AnyView
has learned to maintain spatiotemporal consistency, leading
to improved performance in areas that otherwise would be
ill-defined. A related behavior is also observed in the left
examples of Figure 7, where AnyView leverages its founda-
tional knowledge to infer how a basketball court or soccer
field should look like from different perspectives. More-
over, in Figure 8 we show anecdotal examples of AnyView
leveraging subtle visuals cues to improve generation accu-
racy in unobserved areas, as evidence of advanced common
sense and spatiotemporal reasoning.

Implicitly learning these useful spatiotemporal proper-
ties in a data-driven way enables AnyView to produce
more realistic and physically plausible representations of
real-world scenarios compared to all baselines. As shown
in Figure 1, while methods that rely on potentially in-
accurate depth reprojection (e.g. TrajAttn and GEN3C)
struggle when starting from target poses away from in-
put poses, AnyView successfully generates smooth, consis-
tent target scenes regardless of camera positioning. Simi-
larly, AnyView is able to accurately outpaint much larger
unobserved portions of the scene compared to methods
trained mostly for limited inpainting (e.g. TrajCrafter and
CogNVS). As a consequence of these useful properties,
we achieve state of the art zero-shot DVS performance on
AnyViewBench, outperforming all other baseline methods
by a significant margin across all considered datasets.

5. Discussion
In this paper, we propose AnyView, a generalist dynamic
view synthesis framework targeting extreme camera dis-

8



placements. We also contribute AnyViewBench, a well-
rounded benchmark that focuses on highly challenging sce-
narios from various domains, showing that AnyView sig-
nificantly outperforms baselines in such settings with large
camera displacement and limited overlap between views.
We hope that this work provides a useful building block to-
wards improving video foundation models and 4D represen-
tations, with potential applications in dynamic scene recon-
struction, world models, robotics, self-driving, and more.
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AnyView: Synthesizing Any Novel View in Dynamic Scenes

Supplementary Material

A. Uncertainty Analysis
Figure 9 showcases how AnyView represents and expresses
uncertainty. We calculate this by running the diffusion
model multiple times to collect independent samples from
the conditional distribution, and plotting the per-pixel diver-
sity between these predictions as a spatial heatmap. Each
generation is conditioned on the same input signals, and
represents a possible version of what the other viewpoint
could look like. Even if these outputs are not techni-
cally correct, due to the inherent ambiguity of the task at
hand, they are still reasonable, realistic, and self-consistent,
demonstrating that AnyView learns a powerful probabilis-
tic representation that encodes the natural multimodality of
unobserved parts of the world.

B. Additional Qualitative Results
We complement the qualitative results depicted in the main
paper with the following:

Figure 10 compares the performance of AnyView against
GCD [50] over increasingly wide horizontal camera dis-
placements, showing that AnyView maintains better spatio-
temporal consistency over large viewpoint changes.

Figure 11 shows top-down view synthesis on real-world
(DDAD) driving scenes, where we also compare against the
GCD baseline. This effectively tests each model’s sim-to-
real trajectory generalization capability, since the only train-
ing videos corresponding to similar viewpoint configura-
tions (albeit still not the same) come from synthetic data
(ParallelDomain).

Moreover, we include all figures present in the paper as
videos in the project webpage: tri-ml.github.io/AnyView.
The highly encourage the reader to browse these results,
since it is difficult otherwise to communicate 4D results
through 2D PDF files.

C. Training Datasets
Here, we provide additional details about the AnyView
training mixture, also summarized in Table 4. For all
training datasets, we randomly selected around 10% of se-
quences to serve as in-distribution validation, from which
many of the official AnyViewBench test splits were curated.
• Driving: Most autonomous driving rigs have a set of

well-calibrated RGB cameras mounted around the vehi-
cle, providing plenty of real-world, egocentric (outward-
facing), temporally synchronized video footage. We
additionally capitalize on synthetic data to provide ex-
ocentric (inward-facing) viewpoints that otherwise do

not naturally occur in such datasets. For training, we
use the Woven Planet (Lyft) Level 5 [23], ParallelDo-
main [18, 19, 50], and Waymo Open (Perception) [48]
datasets.

• Robotics: To enable our model to operate in embodied
AI contexts, we use DROID [29] with the improved cal-
ibration parameters provided in [27]. This dataset was
captured at many locations around the world, and labo-
ratories tend to have significantly different appearance,
lighting, camera positions, and calibration quality. We
also include a large collection of internally recorded bi-
manual and single-arm tabletop robotics demonstrations,
denoted LBM.

• 3D: Because multi-view video is expensive to collect and
therefore rather small in overall scale, we leverage single-
view, posed videos of static scenes as an additional data
source. Following [43, 68], we adopt DL3DV-10K [34]
and RealEstate-10K [72]. We also include ScanNet [11],
TartanAir [54], and WildRGB-D [59]. Because these en-
vironments are not dynamic, each frame can essentially
be handled as if it were an independent camera, with-
out any inherent temporal ordering. We randomly sample
non-overlapping segments of 41 frames at training time,
and treat them as two separate viewpoints.

• Other: This catch-all category covers all remaining
multi-view video datasets, including Kubric-4D [50] and
Kubric-5D [16] with synthetic multi-object interaction
and physics, as well as i.e. Ego-Exo4D [15], depicting
complex human activities in cluttered scenes.

In Figure 12, we provide additional examples of input
and target camera poses of various episodes across training
and evaluation sets to illustrate the diversity.

C.1. Kubric-5D
Kubric-5D is our newly introduced extension of Kubric-4D,
with a new set of clips rendered with significantly more
complex camera configuration and object placement. Com-
pared to Kubric-4D, in which cameras are static with con-
stant focal length, facing a small cluster of free-falling ob-
jects, Kubric-5D introduces dynamic cameras with varying
focal lengths as well as varying object placement density,
with the intent to enrich the dynamic information captured
in the videos for the model to learn from. Specifically, we
renedered 1000 randomized scenes, each scene containing
16 cameras spawn at locations evenly distributed around the
world center, and each camera’s trajectory type indepen-
dently sampled; as for the focal length, 1/3 chance all 16
cameras in a scene share a preset value, 1/3 chance share a

1
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Figure 9. Uncertainty analysis. In (a), the model cannot see what is contained inside the black bin because the contents are occluded,
and resorts to predicting fruit (since those objects are common in LBM), in addition to spawning spurious objects out-of-frame on the left.
In (b), we mainly observe variations of object positions along the input viewing direction (overlayed with pink arrows for clarity), which
presumably stems primarily from uncertainty in terms of implicit depth estimation that the model has to perform internally as part of the
representation. In (c), only the front-right view is seen, which passes by several buildings that are reconstructed correctly in all samples (=
front view). Meanwhile, the left half of these output videos has more diversity since it is never directly observed.
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Figure 10. Gradually increasing target azimuth. As we increase the difficulty of the task by rotating the virtual camera over larger and
larger angles away from the observed camera in this Kubric scene, GCD [50] produces garbled outputs where objects become essentially
unrecognizable. In contrast, AnyView maintains clear spatiotemporal correspondence across dramatic viewpoint changes, demonstrating
significantly enhanced 4D understanding over previous methods.
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Figure 11. Upward view synthesis on real-world driving scenarios. We compare AnyView with GCD [50] on DDAD [17], which is a
zero-shot dataset for both methods. AnyView generates much clearer predictions: almost every car that the model can see is reconstructed
with high fidelity and accurate dynamics, whereas GCD often suffers from blurry artefacts, which worsen the further away one looks from
the ego vehicle.

Dataset S/R Domain Type # Cameras # Episodes Resolution Weight

DL3DV-10K [34] Real Indoor + Outdoor 3D – 5,906 41 frames @ 384× 208 6.3 %
DROID [29] Real Robotics 4D 2 (exo only) 29,712 29 frames @ 384× 208 12.5 %
Ego-Exo4D [15] Real Human Activity 4D 4 – 5 (exo only) 2,489 41 frames @ 384× 208 9.4 %
LBM Sim + Real Robotics 4D 2 (exo only) 53,886 41 frames @ 336× 256 12.5 %
Kubric [16] Sim Multi-Object 4D 16 (exo only) 12,400 41 frames @ 384× 256 15.6 %
Lyft [23] Real Driving 4D 6 (ego only) 296 41 frames @ 384× 320 3.1 %
ParallelDomain [1] Sim Driving 4D 19 (16 exo + 3 ego) 7,352 41 frames @ 384× 256 18.8 %
RealEstate-10K [72] Real Indoor + Outdoor 3D – 34,968 41 frames @ 384× 208 6.3 %
ScanNet [11] Real Indoor 3D – 1,357 41 frames @ 384× 288 3.1 %
TartanAir [54] Sim Indoor + Outdoor 3D – 369 41 frames @ 384× 288 3.1 %
Waymo [48] Real Driving 4D 5 (ego only) 798 41 frames @ 384× {176, 256} 3.1 %
WildRGB-D [59] Real Single-Object 3D – 23,002 41 frames @ 384× 288 6.3 %

Table 4. AnyView training datasets. We use a weighted mixture of both static and dynamic data sources that combines multiple domains
of interest. For multi-view video (4D) datasets, if there are more than two cameras, we randomly sample an input + ground truth pair for
each training sample. For static (3D) datasets, with videos typically consisting of only one moving camera, we randomly sample subclips
and treat them as different cameras for the purposes of training and evaluation.

randomly sampled value, and 1/3 chance each camera has
an independently sampled value. Combining a geometry
selection such as spiral, radial, line, lissajous,

etc., with the camera’s viewing direction, there are 16 dif-
ferent types of trajectories (including being static). The
number of objects as well as spawn area are also ran-
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Figure 12. Diversity of camera trajectories. Samples of dataset camera trajectories illustrating the diversity of motion patterns used in
our evaluation.

Method Base Model Training Datasets Resolution Input Cam. Align Start # DOF

GCD [50] (2024) SVD-1B [6] Kubric-4D, ParDom-4D 14 frames @ 384 × 256 Either Either 3
TrajAttn [60] (2024) SVD-1B [6] MiraData 25 frames @ 1024 × 576 Flexible Yes 6 ·T
GEN3C [43] (2025) GEN3C-Cosmos-7B Kubric-4D, DL3DV, RE-10K, Waymo OD 121 frames @ 1280 × 704 Moving Yes 6 · T
TrajCrafter [68] (2025) CogVideoX-Fun-5B [64] OpenVid-1M, DL3DV, RE-10K 49 frames @ 672 × 384 Flexible Yes* 5
ReCamMaster [4] (2025) Wan2.1 [52] MultiCamVideo 81 frames @ 672 × 384 Flexible Yes < 1
InverseDVS [66] (2025) CogVideoX-5B-I2V [64] – 49 frames @ 720 × 480 Flexible Flexible 6 · T
CogNVS [9] (2025) CogVideoX-5B-I2V [64] SA-V, TAO, YT-VOS, DAVIS 49 frames @ 720 × 480 Moving Flexible 6

Ours (AnyView) Cosmos-2B [37] See Table 4 [9, 41] frames @ 576 × [304, 384] Flexible Flexible 6 · T

Table 5. Description of baselines. Some methods are self-supervised [9, 60, 68] and/or training-free [66], and hence do not require
multi-view video datasets for training. Input Cam. refers to what kind of video a model can accept as input. Align Start specifies whether
the output trajectory needs to start at the same initial frame, in which case we typically apply the smooth interpolation procedure. See
Section E for more information. *TrajCrafter is trained with aligned start, but the official implementation does include limited support for non-aligned starting
point inference.

domly sampled for each scene, covering the possibilities
of denser/sparser clustering/scattering. All videos are ren-
dered at 576 × 384 resolution with 24 FPS for 60 seconds,
using the Kubric engine [16] and code adapted from [50].

D. Evaluation Datasets
Here, we describe the logic of which datasets and subsets
are held out for evaluation purposes.
• Driving: The training sets for Lyft and Waymo are both

recorded exclusively in the United States [23, 48]. We
hold out Argoverse, also recorded in the USA [56] (al-
beit in mostly non-overlapping cities), because it has por-
trait videos as the front camera, which do not exist during
training. We also hold out DDAD, because it contains
videos recorded in Japan [17].

• Robotics: While episodes in LBM are recorded across
multiple stations in both simulation and the real world,
DROID [29] has more visual diversity. We decide to hold
out all videos belonging to 2 out of 13 institutions (Gupta
Lab, ILIAD) for zero-shot testing.

• Human Activity: One natural choice for this category
is Ego-Exo4D [15], which has highly challenging, real-
world scenes, often involving multiple humans, recorded
by 4 to 5 inward-facing cameras. We hold out two in-
stitutions (FAIR, NUS), two activities (cpr, guitar), and
three institution-activity pairs (basketball at Uniandes, pi-
ano at Indiana, soccer at UTokyo). Notably, cpr at NUS
becomes the “most zero-shot” combination since both the
activity and institution are entirely unseen. Since the cam-
eras used to collect the dataset have noticeable distor-
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tion, we implement a non-pinhole camera model to gen-
erate the actual viewing rays when given a grid, based on
the official code examples that undistort the frames using
coefficients stored in each sample. We further evaluate
on videos from the eight exocentric cameras of the As-
semblyHands [38] dataset, a subset of Assembly101 [45]
that has calibrated camera intrinsics and extrinsics. The
dataset records dexterous hand-object interactions during
the assembly and disassembly of pull-apart toys, provid-
ing a challenging zero-shot test setting for AnyView.

E. Baselines

Here, we outline how each baseline was adapted to
AnyViewBench. In each case, when a method predicts
fewer frames than the evaluation episode, we run the model
multiple times in a sliding window fashion until the full
video is covered, and average metrics such that each frame
is used exactly once. In the opposite scenario, i.e. when
a method predicts more frames than necessary, we simply
discard the superfluous ones.

We provide the evaluated methods with ground truth
camera pose and intrinsics, and when a method needs depth
we use DepthAnythingV2 [63] to calculate metric depths
maps since the ground truth pose we use are in metric space.

Some methods are trained to operate with smooth cam-
era trajectories, and their performance degrades when there
is minimal overlap between the target and input trajectories
in the beginning of the videos. However, many trajectories
in AnyViewBench exhibit precisely such limited overlap.
To address this, we use the estimated depth to smoothly in-
terpolate between the input view and the first target view,
freezing the first frame for a short while until the target pose
is reached, then concatenate these interpolated frames with
the actual input sequence.

• Generative Camera Dolly (GCD) [50]: This model only
supports inference with 14 frames at a time (both in terms
of input and output video), and with 3 degrees of free-
dom. It assumes a spherical coordinate system (ϕ, θ, r),
where the camera controls provided to the network are the
relative azimuth angle ∆ϕ, relative elevation angle ∆θ,
and relative radius ∆r. The input and target viewpoints
always aim at the center of the scene. To reduce the 6 ·T -
DOF AnyViewBench camera trajectories into the 3-DOF
conditioning space of GCD, information loss is unavoid-
able, so we apply the following approximate projection:
1. Take the forward-looking vector f = (fx, fy, fz) (=

third column of the extrinsics matrix) and translation
vector t = (tx, ty, tz) (= last column of the extrinsics
matrix) of the camera pose of each viewpoint of either
the middle or last frame (depending on the dataset) of
the video.

2. Measure the azimuth angle of each vector: ϕ =

arctan
(

fy
fx

)
; the difference between both values is

then ∆ϕ.
3. Measure the elevation angle of each vector: θ =

− arctan

(
fz√
f2
x+f2

y

)
; the difference between both

values is then ∆θ.
4. Measure the Euclidean distance from each camera ori-

gin to the scene origin: r =
√

t2x + t2y + t2z; the differ-
ence between both values is then ∆r.

• Trajectory Attention [60]: TrajectoryAttention takes a
variable number of input image frames at a resolution of
1024 × 576. Given N input images, we provide the N
warped images from the target views along with the first
image from the source view (N+1 images in total). Since
our trajectories are represented in metric space, we opted
to use the metric version of DepthAnythingV2, unlike the
non-metric model used in the original implementation.
We also modified the original warping code, which only
supported transformations around the source view, so that
it can handle arbitrary trajectories.

• GEN3C [43]: GEN3C supports number of frames in
120 ∗ N + 1 pattern; we choose 121 as it is enough to
cover the length of clips in all evaluated datasets. To
meet the length requirement, each input video is padded
to 121 frames using the last frame, and metrics are only
computed on the original leading frames from the out-
put. Following the official inference code, the videos
are first resized and predicted in 1280 × 704, and we
resize them back to the original resolution for metrics
calculation. The original implementation requires per-
frame camera pose, intrinsics, and depth map estimated
by choice of SLAM packages (VIPE [26] recommended)
for each video; while this is designed for arbitrary videos
without 3D information, it prevents us from specifying
desired camera poses and intrinsics for fair comparison
with the ground truths. Therefore, we instead feed the
pipeline ground truth camera poses, intrinsics, and depths
maps estimated by DepthAnythingV2 as mentioned in the
beginning of section. It is worth noting that VIPE’s esti-
mated depth cannot be used alone in this case, as its scale
is coupled with the estimated pose and intrinsics instead
of ground truth ones.

• TrajectoryCrafter [68]: TrajCrafter supports 49-frame
clips at 672 × 384. The input camera is flexible. The
original implementation relies on a parameterized trajec-
tory representation (θ, ϕ, r, x, y) for spherical camera
motion and computes geometric warping using depth es-
timated by DepthCrafter [24]. While suitable for smooth
parametric trajectories, this approach has limited support
for arbitrary real-world camera transformations, such as
those found in our benchmark. To address this limitation,
we modified the inference implementation to load pre-
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computed re-projected RGB frames, bypassing the orig-
inal depth estimation and re-projection steps. We apply
the depth warping interpolation procedure as described
above. Binary masks are automatically computed by
thresholding black pixels to identify invalid re-projection
regions. The rest of the implementation is left unchanged.

• CogNVS [9]: Similarly to TrajectoryCrafter, CogNVS
supports 49-frame sequences at a resolution of 720×480.
We do not perform test-time optimization and instead run
the model in a zero-shot manner. CogNVS can be com-
bined with any depth reconstruction approach, allowing
improved view synthesis through better geometric recon-
struction. To ensure consistency with other baselines that
rely on off-the-shelf depth estimators, we use monoc-
ular depth estimated by DepthAnythingV2. We apply
the depth warping interpolation procedure as described
above, matching the required 49-frame length.
We summarize the training sets and some properties of

each baseline in 5. Here, “# DOF” stands for (continu-
ous) degrees of freedom, denoting the dimensionality of the
space of trajectories each model was trained with (ignoring
intrinsics), and is thus linked to its effective camera pose
controllability at inference time. < 1 means that only a fi-
nite list of possible canonical trajectories are supported. The
“Input Cam.” options mean:
• Moving: The method expects the camera trajectory of the

input video to move, e.g. for depth estimation to work
well.

• Flexible: The same model can support either static pose
or dynamic pose input videos.

• Either: Separate models exist for input videos with fixed
or moving poses over time.

The “Align Start” options mean:
• Yes: The first target camera pose must be spatially very

close to the first input camera pose (typically linked to
narrow DVS).

• Flexible: The same model can support both narrow and
extreme DVS.

• Either: Separate models exist for both settings.
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