DGPDataset
-
class
packnet_sfm.datasets.dgp_dataset.
DGPDataset
(path, split, cameras=None, depth_type=None, with_pose=False, with_semantic=False, back_context=0, forward_context=0, data_transform=None)[source] Bases:
object
DGP dataset class
- Parameters
path (str) – Path to the dataset
split (str {'train', 'val', 'test'}) – Which dataset split to use
cameras (list of str) – Which cameras to get information from
depth_type (str) – Which lidar will be used to generate ground-truth information
with_pose (bool) – If enabled pose estimates are also returned
with_semantic (bool) – If enabled semantic estimates are also returned
back_context (int) – Size of the backward context
forward_context (int) – Size of the forward context
data_transform (Function) – Transformations applied to the sample
-
generate_depth_map
(sample_idx, datum_idx, filename)[source] Generates the depth map for a camera by projecting LiDAR information. It also caches the depth map following DGP folder structure, so it’s not recalculated
- Parameters
sample_idx (int) – sample index
datum_idx (int) – Datum index
filename – Filename used for loading / saving
- Returns
depth – Depth map for that datum in that sample
- Return type
np.array [H, W]
-
get_backward
(key, sensor_idx)[source] Return backward timesteps of a key from a sensor
-
get_context
(key, sensor_idx)[source] Get both backward and forward contexts
-
get_current
(key, sensor_idx)[source] Return current timestep of a key from a sensor
-
get_filename
(sample_idx, datum_idx)[source] Returns the filename for an index, following DGP structure
- Parameters
sample_idx (int) – Sample index
datum_idx (int) – Datum index
- Returns
filename – Filename for the datum in that sample
- Return type
str
-
get_forward
(key, sensor_idx)[source] Return forward timestep of a key from a sensor
-
packnet_sfm.datasets.dgp_dataset.
stack_sample
(sample)[source] Stack a sample from multiple sensors