SupervisedLoss
-
class
packnet_sfm.losses.supervised_loss.
BerHuLoss
(threshold=0.2)[source] Bases:
torch.nn.modules.module.Module
Class implementing the BerHu loss.
-
forward
(pred, gt)[source] Calculates the BerHu loss.
- Parameters
pred (torch.Tensor [B,1,H,W]) – Predicted inverse depth map
gt (torch.Tensor [B,1,H,W]) – Ground-truth inverse depth map
- Returns
loss – BerHu loss
- Return type
torch.Tensor [1]
-
-
class
packnet_sfm.losses.supervised_loss.
SilogLoss
(ratio=10, ratio2=0.85)[source] Bases:
torch.nn.modules.module.Module
-
forward
(pred, gt)[source] Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
-
-
class
packnet_sfm.losses.supervised_loss.
SupervisedLoss
(supervised_method='sparse-l1', supervised_num_scales=4, progressive_scaling=0.0, **kwargs)[source] Bases:
packnet_sfm.losses.loss_base.LossBase
Supervised loss for inverse depth maps.
- Parameters
supervised_method (str) – Which supervised method will be used
supervised_num_scales (int) – Number of scales used by the supervised loss
progressive_scaling (float) – Training percentage for progressive scaling (0.0 to disable)
kwargs (dict) – Extra parameters
-
calculate_loss
(inv_depths, gt_inv_depths)[source] Calculate the supervised loss.
- Parameters
inv_depths (list of torch.Tensor [B,1,H,W]) – List of predicted inverse depth maps
gt_inv_depths (list of torch.Tensor [B,1,H,W]) – List of ground-truth inverse depth maps
- Returns
loss – Average supervised loss for all scales
- Return type
torch.Tensor [1]
-
forward
(inv_depths, gt_inv_depth, return_logs=False, progress=0.0)[source] Calculates training supervised loss.
- Parameters
inv_depths (list of torch.Tensor [B,1,H,W]) – Predicted depth maps for the original image, in all scales
gt_inv_depth (torch.Tensor [B,1,H,W]) – Ground-truth depth map for the original image
return_logs (bool) – True if logs are saved for visualization
progress (float) – Training percentage
- Returns
losses_and_metrics – Output dictionary
- Return type
dict
-
property
logs
Returns class logs.
-
packnet_sfm.losses.supervised_loss.
get_loss_func
(supervised_method)[source] Determines the supervised loss to be used, given the supervised method.