Image
-
packnet_sfm.utils.image.
flip_lr
(image)[source] Flip image horizontally
- Parameters
image (torch.Tensor [B,3,H,W]) – Image to be flipped
- Returns
image_flipped – Flipped image
- Return type
torch.Tensor [B,3,H,W]
-
packnet_sfm.utils.image.
flip_model
(model, image, flip)[source] Flip input image and flip output inverse depth map
- Parameters
model (nn.Module) – Module to be used
image (torch.Tensor [B,3,H,W]) – Input image
flip (bool) – True if the flip is happening
- Returns
inv_depths – List of predicted inverse depth maps
- Return type
list of torch.Tensor [B,1,H,W]
-
packnet_sfm.utils.image.
gradient_x
(image)[source] Calculates the gradient of an image in the x dimension :param image: Input image :type image: torch.Tensor [B,3,H,W]
- Returns
gradient_x – Gradient of image with respect to x
- Return type
torch.Tensor [B,3,H,W-1]
-
packnet_sfm.utils.image.
gradient_y
(image)[source] Calculates the gradient of an image in the y dimension :param image: Input image :type image: torch.Tensor [B,3,H,W]
- Returns
gradient_y – Gradient of image with respect to y
- Return type
torch.Tensor [B,3,H-1,W]
-
packnet_sfm.utils.image.
image_grid
(B, H, W, dtype, device, normalized=False)[source] Create an image grid with a specific resolution
- Parameters
B (int) – Batch size
H (int) – Height size
W (int) – Width size
dtype (torch.dtype) – Meshgrid type
device (torch.device) – Meshgrid device
normalized (bool) – True if grid is normalized between -1 and 1
- Returns
grid – Image grid containing a meshgrid in x, y and 1
- Return type
torch.Tensor [B,3,H,W]
-
packnet_sfm.utils.image.
interpolate_image
(image, shape, mode='bilinear', align_corners=True)[source] Interpolate an image to a different resolution
- Parameters
image (torch.Tensor [B,?,h,w]) – Image to be interpolated
shape (tuple (H, W)) – Output shape
mode (str) – Interpolation mode
align_corners (bool) – True if corners will be aligned after interpolation
- Returns
image – Interpolated image
- Return type
torch.Tensor [B,?,H,W]
-
packnet_sfm.utils.image.
interpolate_scales
(images, shape=None, mode='bilinear', align_corners=False)[source] Interpolate list of images to the same shape
- Parameters
images (list of torch.Tensor [B,?,?,?]) – Images to be interpolated, with different resolutions
shape (tuple (H, W)) – Output shape
mode (str) – Interpolation mode
align_corners (bool) – True if corners will be aligned after interpolation
- Returns
images – Interpolated images, with the same resolution
- Return type
list of torch.Tensor [B,?,H,W]
-
packnet_sfm.utils.image.
load_image
(path)[source] Read an image using PIL
- Parameters
path (str) – Path to the image
- Returns
image – Loaded image
- Return type
PIL.Image
-
packnet_sfm.utils.image.
match_scales
(image, targets, num_scales, mode='bilinear', align_corners=True)[source] Interpolate one image to produce a list of images with the same shape as targets
- Parameters
image (torch.Tensor [B,?,h,w]) – Input image
targets (list of torch.Tensor [B,?,?,?]) – Tensors with the target resolutions
num_scales (int) – Number of considered scales
mode (str) – Interpolation mode
align_corners (bool) – True if corners will be aligned after interpolation
- Returns
images – List of images with the same resolutions as targets
- Return type
list of torch.Tensor [B,?,?,?]
-
packnet_sfm.utils.image.
meshgrid
(B, H, W, dtype, device, normalized=False)[source] Create meshgrid with a specific resolution
- Parameters
B (int) – Batch size
H (int) – Height size
W (int) – Width size
dtype (torch.dtype) – Meshgrid type
device (torch.device) – Meshgrid device
normalized (bool) – True if grid is normalized between -1 and 1
- Returns
xs (torch.Tensor [B,1,W]) – Meshgrid in dimension x
ys (torch.Tensor [B,H,1]) – Meshgrid in dimension y