SemiSupModel
-
class
packnet_sfm.models.SemiSupModel.
SemiSupModel
(supervised_loss_weight=0.9, **kwargs)[source] Bases:
packnet_sfm.models.SelfSupModel.SelfSupModel
Model that inherits a depth and pose networks, plus the self-supervised loss from SelfSupModel and includes a supervised loss for semi-supervision.
- Parameters
supervised_loss_weight (float) – Weight for the supervised loss
kwargs (dict) – Extra parameters
-
forward
(batch, return_logs=False, progress=0.0)[source] Processes a batch.
- Parameters
batch (dict) – Input batch
return_logs (bool) – True if logs are stored
progress – Training progress percentage
- Returns
output – Dictionary containing a “loss” scalar and different metrics and predictions for logging and downstream usage.
- Return type
dict
-
property
logs
Return logs.
-
supervised_loss
(inv_depths, gt_inv_depths, return_logs=False, progress=0.0)[source] Calculates the supervised loss.
- Parameters
inv_depths (torch.Tensor [B,1,H,W]) – Predicted inverse depth maps from the original image
gt_inv_depths (torch.Tensor [B,1,H,W]) – Ground-truth inverse depth maps from the original image
return_logs (bool) – True if logs are stored
progress – Training progress percentage
- Returns
output – Dictionary containing a “loss” scalar a “metrics” dictionary
- Return type
dict